Uncertainty in coprophilous fungal spore concentration estimates

Author:

Perrotti Angelina G.,Ramiadantsoa Tanjona,O’Keefe Jennifer,Nuñez Otaño Noelia

Abstract

The abundance of coprophilous (dung-inhabiting) fungal spores (CFS) in sedimentary records is an increasingly popular proxy for past megaherbivore abundance that is used to study megaherbivore-vegetation interactions, timing of megaherbivore population declines and extinctions, and the introduction of domesticated herbivores. This method often relies on counting CFS alongside pollen and tracers of known concentration such as exotic pollen or synthetic microspherules. Prior work has encouraged reporting CFS abundances as accumulation rates (spores/unit2/year) or concentration (spores/unit3) instead of percentages relative to the total pollen abundance, because CFS percentages can be sensitive to fluctuations in pollen influx. In this work, we quantify the uncertainty associated with estimating concentration values at different total counts and find that high uncertainty is associated with concentration estimates using low to moderate total counts (n = 20 to 200) of individual fungal spore types and tracers. We also demonstrate the effect of varying tracer proportions, and find that larger tracer proportions result in narrower confidence intervals. Finally, the probability of encountering a CFS spore from a specific taxon occurring in moderate concentrations (1,000 spores/unit2) dramatically decreases after a low tracer count (∼50). The uncertainties in concentration estimates caused by calculating tracer proportion are a likely cause of the high observed variance in many CFS time series, especially when CFS or tracer concentrations are low. Thus, we recommend future CFS studies increase counts and report the uncertainty surrounding concentration values. For some records, reporting spore data as presence/absence rather than concentrations or counts is preferable, such as when performing high counts is not feasible.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3