Biodiversity and potential functionality of biofilm-sediment biotope in La Muerte lagoon, Monegros Desert, Spain

Author:

Berlanga Mercedes,Picart Pere,Blasco Arnau,Benaiges-Fernandez Robert,Guerrero Ricardo,Butturini Andrea,Urmeneta Jordi

Abstract

La Muerte lagoon is an ephemeral endorheic water body located in the Monegros desert, Zaragoza, Spain. Amplicon sequencing of the 16S rRNA gene was performed to analyze the bacterial and archaeal communities in biofilm-sediment samples over three years, to understand the dynamic changes in the microbial community. PICRUSt and shotgun metagenomics were used to examine energy production and carbohydrate metabolism pathways. The dominant bacterial phyla were Actinobacteriota, Bacteroidota, Cyanobacteriota, and Pseudomonadota, while Halobacteriota was the predominant archaeal phylum. Despite seasonal environmental fluctuations, the biofilm community remained stable over time, suggesting resilience. The Calvin-Benson cycle was the main carbon fixation pathway, carried out by Cyanobacteria and purple non-sulfur bacteria. Nitrogen fixation by diazotrophs supplied an important nitrogen source. Organic carbon was derived primarily from autotrophs, with little use of allochthonous plant material. The comparison of biofilm-sediment and water column biotopes showed distinct but related prokaryote communities. Biofilm-sediments showed higher taxonomic diversity and different proportions of microbial phyla compared to the water column. This study provides initial insights into the complex microbial life in endorheic lagoons and underscores the importance of protecting these globally threatened habitats. The limited sample size in this study warrants further investigation with a more comprehensive sampling strategy to fully characterize the microbial communities and their functional roles in the different biotopes of La Muerte lagoon.

Funder

Ministerio de Ciencia e Innovación

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3