Groping in the Fog: Soaring Migrants Exhibit Wider Scatter in Flight Directions and Respond Differently to Wind Under Low Visibility Conditions

Author:

Becciu Paolo,Panuccio Michele,Dell’Omo Giacomo,Sapir Nir

Abstract

Atmospheric conditions are known to affect flight propensity, behaviour during flight, and migration route in birds. Yet, the effects of fog have only rarely been studied although they could disrupt orientation and hamper flight. Fog could limit the visibility of migrating birds such that they might not be able to detect landmarks that guide them during their journey. Soaring migrants modulate their flight speed and direction in relation to the wind vector to optimise the cost of transport. Consequently, landmark-based orientation, as well as adjustments of flight speed and direction in relation to wind conditions, could be jeopardised when flying in fog. Using a radar system operated in a migration bottleneck (Strait of Messina, Italy), we studied the behaviour of soaring birds under variable wind and fog conditions over two consecutive springs (2016 and 2017), discovering that migrating birds exhibited a wider scatter of flight directions and responded differently to wind under fog conditions. Birds flying through fog deviated more from the mean migration direction and increased their speed with increasing crosswinds. In addition, airspeed and groundspeed increased in the direction of the crosswind, causing the individuals to drift laterally. Our findings represent the first quantitative empirical evidence of flight behaviour changes when birds migrate through fog and explain why low visibility conditions could risk their migration journey.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference63 articles.

1. Information theory and an extension of the maximum likelihood principle;Akaike;2nd International Symposium on Information Theory Akadémiai Kiadó,1973

2. Wind selectivity of migratory flight departures in birds.;Åkesson;Behav. Ecol. Sociobiol.,2000

3. Negotiating an ecological barrier: crossing the Sahara in relation to winds by common swifts.;Åkesson;Philos. Trans. R. Soc, B Biol. Sci.,2016

4. Wind as selective agent in bird migration.;Alerstam;Ornis Scand.,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3