Genome assembly of Luehdorfia taibai, an endangered butterfly endemic to Qinling Moutains in China with extremely small populations

Author:

Guan De-Long,Zhao Lu,Li Yufei,Xing Lian-Xi,Huang Huateng,Xu Sheng-Quan

Abstract

Conservation genomic resources over the past decade has drastically improved, since genomes can be used to predict diverse parameters vital to conservation management. Luehdorfia taibai is an endemic butterfly only found in restricted aeras in middle-west China and is critically endangered. It was classfied as a vunerlable (VN) species in the “China species red list.” Here we generated 34.38 Gb of raw DNA sequencing reads and obtained a high-qualified draft genome assembly of L. taibai. The final genome is ~683.3 Mb, with contig N50 size of 10.19 Mb. Further, 98.6% of single-copy orthologous genes have been recovered by BUSCO. An estimated 42.34% of the genome of L. taibai consists of repetitive elements. Combined with gene prediction and transcriptome sequencing, genome annotation produced 15,968 protein-coding genes. Additionally, a nearly 1:1 orthology ratio of syntenic blocks between L. taibai and its closest genome Luehdorfia chinensis suggested that the genome structures have not changed much after speciation. The genome of L. taibai have not undergone a whole genome duplication event. Population dynamics analyses indicates that L. taibai has an extremely low heterozygosity of 0.057%, and its population size has declined dramatically over the past 10 thousand years. Our study describes a draft genome assembly of the L. taibai, the first implication of this species. We consider the globally overexploited of the host plants is not the main reason to threaten L. taibai. The genome will provide advice for the conservation to the economically important Luehdorfia lineage and this specific species.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3