Surveying wildlife and livestock in Uganda with aerial cameras: Deep Learning reduces the workload of human interpretation by over 70%

Author:

Delplanque Alexandre,Lamprey Richard,Foucher Samuel,Théau Jérôme,Lejeune Philippe

Abstract

As the need to accurately monitor key-species populations grows amid increasing pressures on global biodiversity, the counting of large mammals in savannas has traditionally relied on the Systematic-Reconnaissance-Flight (SRF) technique using light aircrafts and human observers. However, this method has limitations, including non-systematic human errors. In recent years, the Oblique-Camera-Count (OCC) approach developed in East Africa has utilized cameras to capture high-resolution imagery replicating aircraft observers’ oblique view. Whilst demonstrating that human observers have missed many animals, OCC relies on labor-intensive human interpretation of thousands of images. This study explores the potential of Deep Learning (DL) to reduce the interpretation workload associated with OCC surveys. Using oblique aerial imagery of 2.1 hectares footprint collected during an SRF-OCC survey of Queen Elizabeth Protected Area in Uganda, a DL model (HerdNet) was trained and evaluated to detect and count 12 wildlife and livestock mammal species. The model’s performance was assessed both at the animal instance-based and image-based levels, achieving accurate detection performance (F1 score of 85%) in positive images (i.e. containing animals) and reducing manual interpretation workload by 74% on a realistic dataset showing less than 10% of positive images. However, it struggled to differentiate visually related species and overestimated animal counts due to false positives generated by landscape items resembling animals. These challenges may be addressed through improved training and verification processes. The results highlight DL’s potential to semi-automate processing of aerial survey wildlife imagery, reducing manual interpretation burden. By incorporating DL models into existing counting standards, future surveys may increase sampling efforts, improve accuracy, and enhance aerial survey safety.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference45 articles.

1. A comparison of image and observer based aerial surveys of narwhal;Bröker;Mar. Mammal Sci.,2019

2. Taking stock of nature: Essential biodiversity variables explained;Brummitt;Biol. Conserv.,2017

3. Advanced Distance Sampling

4. Bias in aerial survey;Caughley;J. Wildl. Manage.,1974

5. Sampling in aerial survey;Caughley;J. Wildl. Manage.,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3