Getting to the Root of Organic Inputs in Groundwaters: Stygofaunal Plant Consumption in a Calcrete Aquifer

Author:

Saccò Mattia,Campbell Matthew A.,Nevill Paul,Humphreys William F.,Blyth Alison J.,Grierson Pauline F.,White Nicole E.

Abstract

Groundwater environments interact with and support subterranean biota as well as superficial aquatic and terrestrial ecosystems. However, knowledge of subterranean energy flows remains incomplete. Cross-boundary investigations are needed to better understand the trophic structures of groundwater ecosystems and their reliance on carbon inputs from aboveground. In this study we used carbon and nitrogen stable isotope analyses combined with radiocarbon fingerprints to characterise organic flows in groundwater ecosystems. We coupled these data with DNA metabarcoding of the gut contents of stygofauna to further elucidate organic matter (OM) sources and shifts in diet preferences. Samples were collected from the arid zone Sturt Meadows calcrete aquifer under low rainfall (LR) and high rainfall (HR) conditions. Bayesian modelling of Δ14C, δ13C, and δ15N data indicated that primary consumers (copepods) incorporated mainly particulate organic carbon (POC) under LR but during HR shifted to root derived material (either exudates or direct root grazing). By contrast, diets of secondary consumers (amphipods) were dominated by root material under both LR and HR. Our DNA metabarcoding-based results indicate that amphipods relied primarily on root inputs from perennial trees (likely Eucalyptus and Callitris) during the dry season (LR). Under HR, diets of both amphipods and copepods also included organic material derived from a broad range of more shallow rooted shrubs, and ephemeral herbs and grasses. Our findings illustrate the complexity of functional linkages between groundwater biota and surface terrestrial ecosystems in environments where aboveground productivity, diversity and OM flux to groundwater are intimately linked to often episodic rainfall.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3