Predicting fish species richness and abundance in the Lower Mekong Basin

Author:

Ngor Peng Bun,Uy Sophorn,Sor Ratha,Chan Bunyeth,Holway Joseph,Null Sarah E.,So Nam,Grenouillet Gaël,Chandra Sudeep,Hogan Zeb S.,Lek Sovan

Abstract

Predictive models are widely used to investigate relationships between the distribution of fish diversity, abundance, and the environmental conditions in which they inhabit, and can guide management actions and conservation policies. Generally, the framework to model such relationships is established; however, which models perform best in predicting fish diversity and abundance remain unexplored in the Mekong River Basin. Here, we evaluated the performance of six single statistical models namely Generalized Linear Model, Classification and Regression Tree, Artificial Neural Network, k-Nearest Neighbor, Support Vector Machine and Random Forest in predicting fish species richness and abundance in the Lower Mekong Basin. We also identified key variables explaining variability and assessed the variable’s sensitivity in prediction of richness and abundance. Moreover, we explored the usefulness of an ensemble modeling approach and investigated if this approach improved model performance. Our results indicated that, overall, the six single statistical models successfully predicted the fish species richness and abundance using 14 geo-hydrological, physicochemical and climatic variables. The Random Forest model consistently out-performed all single statistical models for predicting richness (R2 = 0.85) and abundance (R2 = 0.77); whereas, Generalized Linear Model performed the worst of all models (R2 = 0.60 and 0.56 for richness and abundance). The most important predictors of variation in both richness and abundance included water level, distance from the sea and alkalinity. Additionally, dissolved oxygen, water temperature and total nitrate were important predictors of species richness, while conductivity was important for fish abundance. We found that species richness increased with increasing water level, dissolved oxygen and water temperature, but decreased with increasing distance from the sea, alkalinity and total nitrate. Fish abundance increased with conductivity, but decreased with increasing distance from the sea, water level and alkalinity. Finally, our results highlighted the usefulness of ensemble modeling (R2 = 0.90 and 0.85 for richness and abundance) for providing better predictive power than any of the six single statistical models. Our results can be used to support Mekong River management, particularly fisheries in the context of contemporary regional and global changes.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference110 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3