Community and Species-Level Changes of Insect Species Visiting Mangifera indica Flowers Following Hurricane María: “The Devil Is in the Details”

Author:

Cabrera-Asencio Irma,Meléndez-Ackerman Elvia J.

Abstract

Mangifera indica is a widespread economically important tropical fruit. An ongoing study at the Juana Diaz Experimental Station in Puerto Rico aims to understand the factors that influence local pollination success and fruit yields in four fields each hosting a different mango cultivar (Keitt, Kent, Tommy Atkins, and Julie) at different temporal scales. Here we describe the results of insect collection campaigns that evaluated flower visitor communities of these fields (from January to April) in the seasons of 2017 (before Hurricane Maria), 2018 (after Hurricane Maria) and 2019 (2 years after Hurricane Maria). We expected a reduction in diversity, abundance and yields and even changes in composition following the hurricane events of 2017. Over the 3 years, plants were visited by a combined total of 50 insect species, mostly Diptera (also the most abundant), Hymenoptera, Coleoptera, and Lepidoptera. The relative abundances of insect communities changed but overall species richness of insect communities appeared to be recovering by 2019. A clear decline in overall crop yields for two of the four fields (hosting Kent and Tommy Atkins) was seen in 2018 but then recovered in one and surpassed pre-hurricane levels in another in 2019. Mango trees experienced an increase in the abundance for all insect groups in 2019 following the 2018 decline and only one field (hosting Kent) experienced significant species richness declines in 2018. Two of the most dominant insects, Palpada vinetorum (Diptera) and Apis mellifera (Hymenoptera), showed a “reduction-recovery” pattern for the period of 2018–2019 but not so for Cochliomyia minina which was very abundant in 2018 in three out of four cultivars but then returned to pre-hurricane levels in 2019. In 2017, the trees exposed to higher richness and abundance of species experienced higher yields regardless of cultivars but these relationships when present were often weaker in 2018 (post-hurricane) and 2019 and not all cultivars were equally successful at attracting the same levels of diversity and abundance of insects. Our results do support the importance of pollinator diversity and abundance to improve agricultural yields. They also emphasize that within the context of future extreme atmospheric events, that there needs to be an understanding of not only how these pollinator communities may recover from these events but also of how individual pollinators (vs. other factors) may influence plant yields to develop informed management strategies following such events.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference108 articles.

1. Comparative study between inflorescences characteristics, pollen viability, germination, and dimensions of Tommy Atkins, Kent, and Keitt mango cultivars.;Abourayya;Life Sci. J.,2011

2. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification.;Aizen;Global Change Biol.,2019

3. Diverse pollinator communities enhance plant reproductive success.;Albrecht;Proc. R. Soc. B: Biol. Sci.,2012

4. Insect pollination of mango in Northern Australia.;Anderson;Aust. J. Agric. Res.,1982

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3