The Diversity Decline in Wild and Managed Honey Bee Populations Urges for an Integrated Conservation Approach

Author:

Panziera Delphine,Requier Fabrice,Chantawannakul Panuwan,Pirk Christian W. W.,Blacquière Tjeerd

Abstract

Many parts of the globe experience severe losses and fragmentation of habitats, affecting the self-sustainability of pollinator populations. A number of bee species coexist as wild and managed populations. Using honey bees as an example, we argue that several management practices in beekeeping threaten genetic diversity in both wild and managed populations, and drive population decline. Large-scale movement of hive stocks, introductions into new areas, breeding programs and trading of queens contribute to reducing genetic diversity, as recent research demonstrated for wild and managed honey bees within a few decades. Examples of the effects of domestication in other organisms show losses of both genetic diversity and fitness functions. Cases of natural selection and feralization resulted in maintenance of a higher genetic diversity, including in a Varroa destructor surviving population of honey bees. To protect the genetic diversity of honey bee populations, exchange between regions should be avoided. The proposed solution to selectively breed all local subspecies for a use in beekeeping would reduce the genetic diversity of each, and not address the value of the genetic diversity present in hybridized populations. The protection of Apis mellifera’s, Apis cerana’s and Apis koschevnikovi’s genetic diversities could be based on natural selection. In beekeeping, it implies to not selectively breed but to leave the choice of the next generation of queens to the colonies, as in nature. Wild populations surrounded by beekeeping activity could be preserved by allowing Darwinian beekeeping in a buffer zone between the wild and regular beekeeping area.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3