Salinity Effects on Microbial Derived-C of Coastal Wetland Soils in the Yellow River Delta

Author:

Shao Pengshuai,Han Hongyan,Sun Jingkuan,Yang Hongjun,Xie Hongtu

Abstract

Microorganisms play a crucial role in regulating the turnover and transformation of soil organic carbon (SOC), whereas microbial contribution to SOC formation and storage is still unclear in coastal wetlands. In this study, we collected topsoil (0–20 cm) with 7 salinity concentrations and explored the shifts in microbial residues [represented by amino sugar (AS)] and their contribution to the SOC pool of coastal wetlands in the Yellow River delta. The gradually increasing soil salinity reduced soil water content (SWC), SOC, and soil nitrogen (N), especially in high salinity soils of coastal wetlands. Total ASs and their ratio to SOC, respectively, decreased by 90.56 and 66.35% from low salinity to high salinity soils, indicating that coastal wetlands with high salinity restrained microbial residue accumulation and microbial residue-C retention in the SOC pool. Together with redundancy analysis and path analysis, we found that SWC, pH, SOC, soil N, and glucosamine/muramic arid were positively associated with the ratio of ASs to SOC. The higher available soil resource (i.e., water, C substrate, and nutrient) increased microbial residue accumulation, promoting microbial derived-C contribution to SOC in low salinity coastal wetlands. The greatly decreased microbial residue contribution to SOC might be ascribed to microbial stress strategy and low available C substrate in coastal wetlands with high salinity concentration. Additionally, the gradually increasing salinity reduced fungal residue contribution to SOC but did not change bacterial residue contribution to SOC. These findings indicated that changed fungal residues would substantially influence SOC storage. Our study elucidates microbial contribution to SOC pool through residue reservoir in coastal wetlands and pushes microbial metabolites to a new application in global wetland SOC cycling.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3