Aerial abundance estimates for two sympatric dolphin species at a regional scale using distance sampling and density surface modeling

Author:

Raudino Holly C.,Bouchet Phil J.,Douglas Corrine,Douglas Ryan,Waples Kelly

Abstract

Monitoring wildlife populations over scales relevant to management is critical to supporting conservation decision-making in the face of data deficiency, particularly for rare species occurring across large geographic ranges. The Pilbara region of Western Australia is home to two sympatric and morphologically similar species of coastal dolphins—the Indo-pacific bottlenose dolphin (Tursiops aduncus) and Australian humpback dolphin (Sousa sahulensis)—both of which are believed to be declining in numbers and facing increasing pressures from the combined impacts of environmental change and extensive industrial activities. The aim of this study was to develop spatially explicit models of bottlenose and humpback dolphin abundance in Pilbara waters that could inform decisions about coastal development at a regional scale. Aerial line transect surveys were flown from a fixed-wing aircraft in the austral winters of 2015, 2016, and 2017 across a total area of 33,420 km2. Spatio-temporal patterns in dolphin density were quantified using a density surface modeling (DSM) approach, accounting for imperfect detection as well as both perception and availability bias. We estimated the abundance of bottlenose dolphins at 3,713 (95% CI = 2,679–5,146; average density of 0.189 ± 0.046 SD individuals per km2) in 2015, 2,638 (95% CI = 1,670–4,168; 0.159 ± 0.135 individuals per km2) in 2016 and 1,635 (95% CI = 1,031–2,593; 0.101 ± 0.103 individuals per km2) in 2017. Too few humpback dolphins were detected in 2015 to model abundance, but their estimated abundance was 1,546 (95% CI = 942–2,537; 0.097 ± 0.03 individuals per km2) and 2,690 (95% CI = 1,792–4,038; 0.169 ± 0.064 individuals per km2) in 2016 and 2017, respectively. Dolphin densities were greatest in nearshore waters, with hotspots in Exmouth Gulf, the Dampier Archipelago, and Great Sandy Islands. Our results provide a benchmark on which future risk assessments can be based to better understand the overlap between pressures and important dolphin habitats in tropical northwestern Australia.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3