Coastal Ecosystem Vulnerability and Sea Level Rise (SLR) in South Florida: A Mangrove Transition Projection

Author:

Sklar Fred H.,Carlson Christine,Coronado-Molina Carlos,Maran Ana Carolina

Abstract

We used static, elevation and land cover data to estimate sea level rise impacts (SLR) to urban, developed lands and coastal wetland systems in Everglades National Park and the East and West coastal regions in South Florida. Maps and data tables estimating potential state change to open water were compiled through overlay analysis of elevation, land cover, and SLR masks with future land cover projected using a land cover transition threshold model. Analysis was based on a 2–5-km-wide longitudinal band along the SW and SE coasts of Florida where sea-level rise has no surface impediments to inundation and will likely cause coastline transgression and wetland migration. Analysis used three different projections; 0.27 m (0.9 ft), 0.76 m (2.5 ft) and 1.13 m (3.7 ft) greater than current sea level by 2070 estimated by NOAA and IPCC. Under a 0.27 m SLR projection 51% of the coastal land cover may be impacted. Under 0.76 and 1.13 m projected SLR, coastal land cover areas were impacted by 56.5 and 59.1%, respectively. Migration of coastal wetlands from their current location into more inland areas in response to increased water depths and as a function of empirically derived marsh and mangrove accretion rates were also evaluated. With a SLR of 0.76 m by 2070, without accretion, 1,160 sq km of wetland became open estuarine water. However, with accretion values of 0.211 m (4.1 mm yr–1) and 0.55 m (11 mm yr–1) by 2070, there was a transition of wetland cover to open estuarine water of only 349 and 41 sq km, respectively. Under a low SLR of 0.27 m by 2070 scenario with accretion, the coastal mangroves were able to migrate inland while maintaining the current coastline. It was only under the more extreme scenario of 1.13 m SLR by 2070 that accretion was not able to compensate for inundation and there was a loss of wetland coastline everywhere.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference61 articles.

1. Monitoring biological diversity: strategies, tools, limitations and challenges.;Beever;Northwest Nat.,2006

2. Estimating relative sea level rise and submergence potential at a coastal wetland.;Cahoon;Estuar. Coasts,2015

3. The influence of surface and shallow subsurface soil processes on wetland elevation: a synthesis.;Cahoon;Cur. Top. Wetland Biogeochem.,1999

4. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch.;Cahoon;J. Ecol.,2003

5. Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls;Cahoon;Wetlands and Natural Resource Management. Ecological Studies,2006

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3