Influence of Late Holocene Climate Change and Human Land Use on Terrestrial and Aquatic Ecosystems in Southwest Madagascar

Author:

Domic Alejandra I.,Hixon Sean W.,Velez Maria I.,Ivory Sarah J.,Douglass Kristina G.,Brenner Mark,Curtis Jason H.,Culleton Brendan J.,Kennett Douglas J.

Abstract

Madagascar’s biota underwent substantial change following human colonization of the island in the Late Holocene. The timing of human arrival and its role in the extinction of megafauna have received considerable attention. However, the impacts of human activities on regional ecosystems remain poorly studied. Here, we focus on reconstructing changes in the composition of terrestrial and aquatic ecosystems to evaluate the impact of human land use and climate variability. We conducted a paleoenvironmental study, using a sediment record that spans the last ∼1,145 years, collected from a lakebed in the Namonte Basin of southwest Madagascar. We examined physical (X-ray fluorescence and stratigraphy) and biotic indicators (pollen, diatoms and micro- and macro-charcoal particles) to infer terrestrial and aquatic ecosystem change. The fossil pollen data indicate that composition of grasslands and dry deciduous forest in the region remained relatively stable during an arid event associated with northward displacement of the Intertropical Convergence Zone (ITCZ) between ∼1,145 and 555 calibrated calendar years before present (cal yr BP). Charcoal particles indicate that widespread fires occurred in the region, resulting from a combination of climate drivers and human agency during the entire span covered by the paleorecord. Following settlement by pastoral communities and the disappearance of endemic megafauna ∼1,000 cal yr BP, grasslands expanded and the abundance of trees that rely on large animals for seed dispersal gradually declined. A reduction in the abundance of pollen taxa characteristic of dry forest coincided with an abrupt increase in charcoal particles between ∼230 and 35 cal yr BP, when agro-pastoral communities immigrated into the region. Deforestation and soil erosion, indicated by a relatively rapid sedimentation rate and high K/Zr and Fe/Zr, intensified between 180 and 70 cal yr BP and caused a consequent increase in lake turbidity, resulting in more rapid turnover of the aquatic diatom community. Land use and ongoing climate change have continued to transform local terrestrial and freshwater ecosystems during the last ∼70 years. The current composition of terrestrial and aquatic ecosystems reflects the legacy of extinction of native biota, invasion of exotic species, and diminished use of traditional land management practices.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3