Multispectral remote sensing and DANet model improve the precision of urban park vegetation detection: an empirical study in Jinhai Park, Shanghai

Author:

Wei Weixuan,Cao Jingyi,Wang Nan,Qian Yuhui

Abstract

IntroductionThe precise detection of vegetation in urban parks is crucial for accurate carbon sink calculations and planting assessments, particularly in high-density cities. Unlike traditional methods designed for forest vegetation, the detection and classification of urban park vegetation face challenges such as unclear boundaries, multiple vegetation categories, low image resolution, labor-intensive manual calculations, and unreliable modeling results. However, by utilizing unmanned aerial vehicles (UAVs) equipped with high-resolution visible and multispectral (MS) remote sensing cameras, it becomes possible to label images with green normalized difference vegetation index (GNDVI) and full-spectral three-channel information.MethodsBy employing a dual attention convolutional neural network (DANet) model that incorporates image fusion, DANet, and feature decoding networks, the high-precision detection of urban park vegetation can be significantly improved.ResultsEmpirical validation carried out in Jinhai Park since 2021 has provided evidence of the effectiveness of the DANet model when utilizing early fusion and feature fusion techniques. This model achieves an accurate detection rate of 88.6% for trees, 92.0% for shrubs, 92.6% for ground cover, and 91.8% for overall vegetation. These detection rates surpass those achieved using only visible images (88.7%) or GNDVI images (86.6%).DiscussionThe enhanced performance can be attributed to the intelligent capabilities of the double-in network. This high-precision detection model provides more precise scientific and technical support for subsequent park carbon sink calculations, assessments of existing vegetation for planting designs, and evaluations of urban ecological impacts.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3