Length of stay and departure strategies of Semipalmated Sandpipers (Calidris pusilla) during post-breeding migration in the upper Bay of Fundy, Canada

Author:

Neima Sarah G.,Linhart Rebeca C.,Hamilton Diana J.,Gratto-Trevor Cheri L.,Paquet Julie

Abstract

The Bay of Fundy, Canada is a critical staging area for Semipalmated Sandpipers (Calidris pusilla) during post-breeding migration. Recent range-wide population declines and changes in diet and migratory timing in the Bay of Fundy prompted a re-examination of staging ecology, including length of stay (last estimated in 1981), which is used in calculating migratory population estimates. We used radio-telemetry and the Motus Wildlife Tracking System to estimate individual length of stay and departure conditions for 159 Semipalmated Sandpipers in 2013 and 2014. Using tracking data we compared two estimation methods, minimum length of stay and mark-recapture modelling. Using minimum length of stay, the mean length of stay was approximately 21 days, an increase from the previous estimate of 15 days. Mark-recapture models suggested a much longer staging period that is inconsistent with other data. Sandpipers captured early in the staging period stayed longer on average than those captured later. Departures from the staging area were correlated with north-westerly winds, moderate to high wind speeds and low but rising atmospheric pressures. We suggest that Semipalmated Sandpipers in the Bay of Fundy are not operating on a time-selected migration schedule and instead wait for favourable weather conditions to depart, which occur more often later in the migratory period. Population trends in the Bay of Fundy should be re-evaluated in light of the increased length of stay.

Funder

Environment and Climate Change Canada

Natural Sciences and Engineering Research Council of Canada

New Brunswick Innovation Foundation

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3