Chemical and population genetic analysis show no evidence of ecotype formation in a European population of the parasitoid wasp Nasonia vitripennis

Author:

Buellesbach Jan,Lammers Mark,van de Belt José,Pannebakker Bart A.

Abstract

Ecotypes, subpopulations or strains of a single species locally adapted to divergent ecological conditions within the same habitat are often considered to be the first steps in sympatric speciation. It has been suggested that two ecotypes are distinguishable in Nasonia vitripennis, a prominent model organism for parasitic Hymenoptera, with one ecotype parasitizing fly pupae in bird nests, and the other one parasitizing fly pupae on carrion. This differentiation into two ecotypes has been hypothesized to indicate incipient sympatric speciation in populations of this globally distributed species. In the present study, we investigated the differentiation into these two distinct ecotypes focusing on chemical profiles and the population genetic divergence in a wild N. vitripennis population from the Netherlands. Isofemale lines were obtained from bird nest boxes and from deer carrion, respectively, representing both microhabitats. To test for phenotypic differentiation, we determined the surface cuticular hydrocarbon (CHC) profiles from wasps of both host patches. Using a panel of 14 microsatellites, we concordantly determined the population genetic structure and tested for genetic differentiation between foundresses obtained from both microhabitats. Both the phenotypic as well as the genetic datasets show no evidence for any kind of separation based on the postulated two ecotypes, but rather suggest free interbreeding with no gene flow interruption between the two distinct host patches. Our findings challenge previous assumptions on clearly distinguishable ecotypes in N. vitripennis, and demonstrate how a chemical ecological assessment coupled with population genetics can be instrumental in re-evaluating the potential of ecological differentiation and incipient speciation mechanisms in parasitoid wasps.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3