Quality Assessment of Ecological Environment Based on Google Earth Engine: A Case Study of the Zhoushan Islands

Author:

Liu Zhisong,Wang Liyan,Li Bin

Abstract

With the development of society, the impact of human activities on the ecological environment is becoming increasingly intense, so the dynamic monitoring of the status of the ecological environment is of great significance to the management and protection of urban ecology. As an objective and rapid ecological quality monitoring and evaluation technique, the remote sensing based ecological index (RSEI) has been widely used in the field of ecological research. Free available Landsat series data has the character of a long time series and high spatial resolution provides the possibility to conduct large-scale and long-term monitoring of ecological environment quality. Compared with traditional methods, the Google Earth Engine (GEE) platform can save a lot of time and energy in the data acquisition and preprocessing steps. To monitor the quality of the ecological environment in Zhoushan from 2000 to 2020, the GEE platform was used for cloud computing to obtain the RSEI, which can reflect the quality of the ecological environment. The results show that (1) from 2000 to 2020, the average RSEI value in Zhoushan Islands decreased from 0.748 to 0.681, indicating that the overall ecological environment exhibited a degradation trend. (2) From 2000 to 2020, the change in the area of each ecological environment level indicates that the quality of the ecological environment in Zhoushan Islands exhibited a degradation trend. The proportion of the area with an excellent eco-environment grade decreased by 13.54%, and the proportion of the area with poor and fair eco-environment grades increased by 3.43%.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3