Urban areas in rural landscapes – the importance of green space and local architecture for bat conservation

Author:

Printz Lisa,Jung Kirsten

Abstract

Urbanization is a highly disperse process, resulting in urban sprawl across landscapes. Within such landscapes, structural heterogeneity may be an important factor for maintaining biodiversity. We investigated the importance of habitat heterogeneity on bats in villages across the Schwäbische Alb, Germany, a progressively urbanized region. Bat activity and diversity were assessed using acoustic monitoring. We characterized habitat composition at the local and neighborhood scale and assessed environmental characteristics of urban density, vegetation cover and architectural features, combining satellite and ground-based measures. Our results revealed that the extent of urban areas determines the occurrence of different bat species, while local spatial, structural, and architectonic parameters at recording sites affected bat activity, feeding activity and social encounters. Larger urban areas with increased proportion of impervious surfaces and newly constructed housing areas were associated with fewer bat species and lower bat activity. Bat activity and feeding were highest in housing areas constructed between 1950-2000 and increased with higher proportions of older, rather openly structured vegetation. Our results clearly show a combined importance of environmental parameters across spatial scales, affecting habitat suitability and quality of rural urban areas for bats. This highlights that strategies for biodiversity inclusion in rural urban planning need to consider both local and neighborhood conditions to support bat diversity and vital bat activity. In particular, it exemplifies future challenges to maintain biodiversity within progressively urbanized rural landscapes, as this needs support by municipalities for maintaining space for nature in areas designated for urban development and also the consciousness by local residents for biodiversity-friendly modernizations.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3