Author:
Danchin Antoine,Fenton André A.
Abstract
The abstract basis of modern computation is the formal description of a finite state machine, the Universal Turing Machine, based on manipulation of integers and logic symbols. In this contribution to the discourse on the computer-brain analogy, we discuss the extent to which analog computing, as performed by the mammalian brain, is like and unlike the digital computing of Universal Turing Machines. We begin with ordinary reality being a permanent dialog between continuous and discontinuous worlds. So it is with computing, which can be analog or digital, and is often mixed. The theory behind computers is essentially digital, but efficient simulations of phenomena can be performed by analog devices; indeed, any physical calculation requires implementation in the physical world and is therefore analog to some extent, despite being based on abstract logic and arithmetic. The mammalian brain, comprised of neuronal networks, functions as an analog device and has given rise to artificial neural networks that are implemented as digital algorithms but function as analog models would. Analog constructs compute with the implementation of a variety of feedback and feedforward loops. In contrast, digital algorithms allow the implementation of recursive processes that enable them to generate unparalleled emergent properties. We briefly illustrate how the cortical organization of neurons can integrate signals and make predictions analogically. While we conclude that brains are not digital computers, we speculate on the recent implementation of human writing in the brain as a possible digital path that slowly evolves the brain into a genuine (slow) Turing machine.
Subject
Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Form, function, mind: What doesn't compute (and what might);Biochemical and Biophysical Research Communications;2024-08
2. Computation for cognitive science: Analog versus digital;WIREs Cognitive Science;2024-04-24
3. The spike/waves of consciousness;The Electromagnetic Fields of Consciousness;2024
4. A Novel Artificial Neural Networks Architecture Based on Cerebellum Model;Lobachevskii Journal of Mathematics;2023-02
5. Cerebellum-Inspired Artificial Neural Networks Architecture;2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2023-01-27