Stability mechanisms of soft rock mining roadways through roof cutting and pressure relief: an exploratory model experiment

Author:

Zhu Qingwen,Li Tingchun,Lou Qingnan,Liu Yishuai,Li Chunping,Chen Jiangang

Abstract

IntroductionSoft rock mining roadways are severely deformed and damaged during coal mining. Blindly increasing the support strength not only has little effect but also wastes material resources.MethodsMaintaining the original support parameters, model experiments were conducted to investigate the mechanism of pressure relief protection of the front soft rock mining roadway by cutting the roof behind the longwall face. The roof-cutting height was 2.5 times the coal thickness, the angle was 10°, and the advance distance is 0. ResultsThe study found that the abutment stress borne by the roof of the original roadway was transferred to the coal seams to be mined. The average stress of the coal seams increased by 10%, while the average stress of the surrounding rock in the front roadway decreased by 12.57%. The roof cutting weakened the influence of the overlying strata in the gob on the rear roadway. The stability of the rear roadway also weakened the traction effect on the front roadway. The vertical convergence of the front roadway decreased by 27.3%, and the deformation of the coal pillars decreased by 15.7%.DiscussionThe roof cutting reduced the stress of the front roadway to the peak failure stress, fundamentally weakening the main factor that induced the deformation of the front roadway. Numerical simulations were performed to research the deformation and stress distribution properties of the surrounding rock after roof cutting, and the model experimental results were validated. Finally, engineering recommendations are presented, which are expected to provide a reference for controlling the roadway stability of soft rock masses.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3