Riverscape Genomics Clarifies Neutral and Adaptive Evolution in an Amazonian Characin Fish (Triportheus albus)

Author:

Hay Abbie C.,Sandoval-Castillo Jonathan,Cooke Georgina M.,Chao Ning L.,Beheregaray Luciano B.

Abstract

Understanding the role of natural selection in the evolution of wild populations is challenging due to the spatial complexity of natural systems. The richest diversity of freshwater fishes in the world is found in the Amazon Basin, a system where marked hydrochemical differences exist at the interface of major rivers with distinct “water colors” (i.e., black, white, and clear water). We hypothesize that divergent natural selection associated with these “aquatic ecotones” influences population-level adaptive divergence in the non-migratory Amazonian fish fauna. This hypothesis was tested using a landscape genomics framework to compare the relative contribution of environmental and spatial factors to the evolutionary divergence of the Amazonian characin fish Triportheus albus. The framework was based on spatial data, in situ hydrochemical measurements, and 15,251 filtered SNPs (single nucleotide polymorphisms) for T. albus sampled from three major Amazonian rivers. Gradient Forest, redundancy analysis (RDA) and BayPass analyses were used to test for signals of natural selection, and model-based and model-free approaches were used to evaluate neutral population differentiation. After controlling for a signal of neutral hierarchical structure which was consistent with the expectations for a dendritic system, variation in turbidity and pH were key factors contributing to adaptive divergence. Variation in genes involved in acid-sensitive ion transport pathways and light-sensitive photoreceptor pathways was strongly associated with pH and turbidity variability. This study improves our understanding of how natural selection and neutral evolution impact on the distribution of aquatic biodiversity from the understudied and ecologically complex Amazonia.

Funder

Australian Research Council

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3