Microeukaryotic Community Shifting Along a Lentic-Lotic Continuum

Author:

Wang Yixia,Ren Ze,He Ping,Xu Jie,Li Daikui,Liu Cunqi,Liu Bo,Wu Naicheng

Abstract

As an important regulator of ecosystem functions in river systems, microeukaryotes play an important role in energy and material conversion, yet little is known about the shift along a lentic-lotic continuum. In this study, the 18S rRNA genes sequencing was used to identify the microeukaryotic communities at 82 sites along a lentic-lotic continuum with the aim of understanding the impact of upstream inlet river on microeukaryotic communities in Baiyang Lake (BYD) and its downstream. Our results showed that the upstream inlet river affected the diversity and community composition of microeukaryotes in BYD and downstream rivers, and environmental variables greatly affected the composition of microeukaryotic community. The community composition in BYD had lower variabilities. Co-occurrence network analysis revealed that the network was non-random and clearly parsed into three modules, and different modules were relatively more abundant to a particular area. As keystone taxa, some nodes of the upstream microeukaryotic network played an important role in structuring network and maintaining the stability of the ecosystem. In BYD and downstream, the microeukaryotic network was highly fragmented, and the loss of keystone taxa would have an adverse impact on the integrity and function of the microeukaryotic community. Microeukaryotes had strong tendencies to co-occur, which may contribute to the stability and resilience of microeukaryotic communities. Overall, these findings extend the current understanding of the diversity and community composition of microeukaryotic along a lentic-lotic continuum.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference86 articles.

1. Comparative 16S rDNA metagenomics study of two samples of cassava peel heap from Nigeria and India.;Amao;3 Biotech,2019

2. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning.;Amorim;Sci. Total Environ.,2021

3. Keystone taxa as drivers of microbiome structure and functioning.;Banerjee;Nat. Rev. Microbiol.,2018

4. The cascading reservoir continuum concept (CRCC) and its application to the river Tietê-basin, São Paulo State, Brazil;Barbosa;Theoretical Reservoir Ecology and Its Applications,1999

5. Controlling The False Discovery Rate - A Practical And Powerful Approach To Multiple Testing.;Benjamini;J. R. Stat. Soc. B Stat. Methodol.,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3