Inland populations of sugar maple manifest higher phenological plasticity than coastal populations

Author:

Zhou Yongzhi,Bai Chunmei,Guo Xiali,Mohytych Vasyl,Klisz Marcin,Delagrange Sylvain,Rossi Sergio

Abstract

Plasticity is vital for plants to rapidly acclimate to environmental changes, especially under the climate change. Global warming could advance bud break and extend the growing season, but it also increases the risk of frost damage to developing leaves. In this study, we explored the phenological plasticity of bud burst of half-sib family sugar maple (Acer saccharum Marsh.) seedlings from 11 seed origins in two common gardens at the center and the northern edge of the species distribution in Quebec, Canada. Results showed that the phenological plasticity of sugar maple originating from inland was significantly higher than those from coastal areas at the beginning of leaf development. This discrepancy may result from the long-term frost change frequency of seed origins. Our study suggests that in the context of climate warming, the higher plasticity observed in sugar maple originating from inland areas may benefit from the phenological adaptation of sugar maple and the survival of local populations. It also suggests that inland populations may have a higher potential regarding to assisted migration, but this needs to be confirmed for other functional traits than phenology.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3