Using paleoecological data to inform decision making: A deep-time perspective

Author:

Dowsett Harry,Jacobs Peter,de Mutsert Kim

Abstract

Latest climate models project conditions for the end of this century that are generally outside of the human experience. These future conditions affect the resilience and sustainability of ecosystems, alter biogeographic zones, and impact biodiversity. Deep-time records of paleoclimate provide insight into the climate system over millions of years and provide examples of conditions very different from the present day, and in some cases similar to model projections for the future. In addition, the deep-time paleoecologic and sedimentologic archives provide insight into how species and habitats responded to past climate conditions. Thus, paleoclimatology provides essential context for the scientific understanding of climate change needed to inform resource management policy decisions. The Pliocene Epoch (5.3–2.6 Ma) is the most recent deep-time interval with relevance to future global warming. Analysis of marine sediments using a combination of paleoecology, biomarkers, and geochemistry indicates a global mean annual temperature for the Late Pliocene (3.6–2.6 Ma) ∼3°C warmer than the preindustrial. However, the inability of state-of-the-art climate models to capture some key regional features of Pliocene warming implies future projections using these same models may not span the full range of plausible future climate conditions. We use the Late Pliocene as one example of a deep-time interval relevant to management of biodiversity and ecosystems in a changing world. Pliocene reconstructed sea surface temperatures are used to drive a marine ecosystem model for the North Atlantic Ocean. Given that boundary conditions for the Late Pliocene are roughly analogous to present day, driving the marine ecosystem model with Late Pliocene paleoenvironmental conditions allows policymakers to consider a future ocean state and associated fisheries impacts independent of climate models, informed directly by paleoclimate information.

Funder

U.S. Geological Survey

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference97 articles.

1. The software architecture of climate models: A graphical comparison of CMIP5 and EMICAR5 configurations.;Alexander;Geosci. Model Dev.,2015

2. Diversity of Pliocene-Recent mollusks in the western Atlantic: Extinction, origination, and environmental change;Allmon;Evolution And Environment In Tropical America,1996

3. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling.;Assis;Glob. Ecol. Biogeogr.,2018

4. Warm mid-Pliocene conditions without high climate sensitivity: The CCSM4-Utrecht (CESM 1.0.5) contribution to the PlioMIP2.;Baatsen;Clim. Past Discuss.,2021

5. Verhulst and the logistic equation (1838);Bacaër;A Short History of Mathematical Population Dynamics,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3