River Reorganization Affects Populations of Dwarf Cichlid Species (Apistogramma Genus) in the Lower Negro River, Brazil

Author:

Leitão Carolina Sousa de Sá,Souza Érica M. S.,Santos Carlos H. A.,Val Pedro,Val Adalberto L.,Almeida-Val Vera M. F.

Abstract

Alterations, such as drainage network reorganization, in the landscape in the Amazon basin influence the distribution range and connectivity of aquatic biota and, therefore, their evolution. River capture is a geomorphic mechanism of network reorganization by which a basin captures large portions of the network of a neighboring basin, thus creating a barrier against species dispersal. In this study, the influence of river capture on the genetic differentiation and structuring of two dwarf cichlids species (Apistogramma pertensis and Apistogramma gephyra) is investigated in two tributaries of the lower Negro River. The analysis of 11 loci microsatellite and three mitochondrial DNA genes (Cytochrome b, Citochrome c Oxidase subunit I and 16S ribosomal RNA) confirmed the populational isolation of two dwarf cichlids species, suggesting that they represent evolutionary significant units (ESU) that have been isolated—probably due to the river capture event. The paleovalley that resulted from the river capture is therefore an important physical barrier that separates the populations of the Cuieiras and Tarumã-Mirim Rivers. The findings herein provide evidence of a mechanistic link between the isolation and differentiation of fish populations and the drainage evolution of the Amazon basin, and indicate that the dynamic geological history of the region has promoted species diversification. The process described here partially explains the high diversity in the genus Apistogramma and the information obtained is beneficial to conservation programs.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3