From Binary Model Systems to the Human Microbiome: Factors That Drive Strain Specificity in Host-Symbiont Associations

Author:

Ginete Daren R.,Goodrich-Blair Heidi

Abstract

Microbial symbionts are ubiquitous and can have significant impact on hosts. These impacts can vary in the sign (positive or negative) and degree depending on the identity of the interacting partners. Studies on host-symbiont associations indicate that subspecies (strain) genetic variation can influence interaction outcomes, making it necessary to go beyond species-level distinction to understand host-symbiont dynamics. In this review, we discuss examples of strain specificity found in host-symbiont associations, from binary model systems to the human microbiome. Although host and bacterial factors identified as mediators for specificity could be distinct at the molecular level, they generally fall into two broad functional categories: (1) those that contribute a required activity in support of the association and (2) those involved in antagonistic interactions with organisms outside of the association. We argue here based on current literature that factors from these two categories can work in concert to drive strain specificity and that this strain specificity must be considered to fully understand the molecular and ecological dynamics of host-symbiont associations, including the human microbiome.

Funder

National Institutes of Health

National Science Foundation

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3