Sawfly egg deposition extends the insect life cycle and alters hormone and volatile emission profiles

Author:

Dávila Camila,Fiorenza Juan E.,Gershenzon Jonathan,Reichelt Michael,Zavala Jorge A.,Fernández Patricia C.

Abstract

IntroductionInsect oviposition can enhance plant defenses and decrease plant quality in response to future feeding damage by hatched larvae. Induced resistance triggered by egg deposition and its negative effect on insect herbivore performance is known for several annual plants but has been much less studied in woody perennials, such as species of the Salicaceae. Here we studied the response of the willow Salix babylonica to oviposition by the specialist willow sawfly Nematus oligospilus and its impact on insect performance.MethodsWe measured the effect of oviposition on larval feeding and pupa formation and evaluated its influence on plant phytohormones and volatile emission profile.ResultsWe showed that oviposition reduced neonate larval growth and increased the proportion of prepupae that delayed their transition to pupae, thus extending the length of the sawfly cocoon phase. Oviposited willows increased jasmonic acid levels and changed their volatile profile through enhanced concentrations of the terpenoids, (E/E)-α-farnesene, (Z)- and (E)-β-ocimene. Volatile profiles were characteristic for each type of insect damage (oviposition vs. feeding), but no priming effect was found.DiscussionWe demonstrated that willows could perceive sawfly oviposition per se as a primary factor activating defense signaling via the jasmonic acid pathway. This induced response ultimately determined changes in pupation dynamics that may affect the whole insect population cycle.

Funder

Instituto Nacional de Tecnología Agropecuaria

DAAD

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3