Spatiotemporal evolution and multi-scenario prediction of habitat quality in the Yellow River Basin

Author:

Chen Yanglong,He Zhilin,Yue Tianming,Mu Weichen,Qin Fen

Abstract

IntroductionThe Yellow River Basin (YRB) is not only a vital area for maintaining ecological security but also a key area for China’s economic and social development. Understanding its land-use change trends and habitat quality change patterns is essential for regional ecological conservation and effective resource allocation.MethodsThis study used the patch-generating land-use simulation (PLUS) and Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) models to analyze and predict the spatial and temporal trends of habitat quality in the YRB from 2000 to 2030 under natural development (ND) and ecological conservation and high-quality development (ECD) scenarios. The PLUS model was used to predict land-use change in 2030 under different scenarios, after which the InVEST model was used to obtain the habitat quality distribution characteristics from the 2000–2030 period.Results(1) The mean values of habitat quality in the YRB in 2000, 2010, and 2020 were 0.6849, 0.6992, and 0.7001, respectively. The mean habitat quality values were moderately high. Spatial distribution characteristics were high in the west and low in the east and along the water. In 2030, habitat quality (0.6993) started to decline under ND, whereas under ECD, there was an indication of substantial improvement in habitat quality (0.7186). (2) The mean habitat degradation values in 2000, 2010, and 2020 were 0.0223, 0.0219, and 0.0231, respectively. The level of habitat degradation showed a decreasing trend, followed by an increasing trend with a stable spatial distribution pattern. The mean level of habitat degradation in 2030 (0.0241) continued to increase under ND, while a substantial decrease in the level of habitat degradation occurred under ECD (0.0214), suggesting that the level of habitat degradation could be effectively contained under the ECD scenario. (3) During the study period, the conversion of building land—both negative and positive—had the most pronounced impact on habitat quality per unit area. Further, the conversion of grassland was shown to be a key land transformation that may either lead to the deterioration or improvement of the ecological environment. The results provide scientifific theoretical support and a decision basis for ecological conservation and the high-quality development of the YRB.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3