TeaTime4Schools: Using Data Mining Techniques to Model Litter Decomposition in Austrian Urban School Soils

Author:

Sandén Taru,Wawra Anna,Berthold Helene,Miloczki Julia,Schweinzer Agnes,Gschmeidler Brigitte,Spiegel Heide,Debeljak Marko,Trajanov Aneta

Abstract

Litter decomposition plays a pivotal role in the global carbon cycle, but is difficult to measure on a global scale, especially by citizen scientists. Here, citizen scientists, i.e., school students with their teachers, used the globally applied and standardized Tea Bag Index (TBI) method to collect data on litter decomposition in urban areas in Austria. They also sampled soils to investigate the linkages between litter decomposition and soil attributes. For this study, 54 sites were selected from the school experiments and assembled into a TBI dataset comprising litter decomposition rates (k), stabilization factors (S), as well as soil and environmental attributes. An extensive pre-processing procedure was applied to the dataset, including attribute selection and discretization of the decomposition rates and stabilization factors into three categories each. Data mining analyses of the TBI data helped reveal trends in litter decomposition. We generated predictive models (classification trees) that identified the soil attributes governing litter decomposition. Classification trees were developed for both of the litter decomposition parameters: decomposition rate (k) and stabilization factor (S). The main governing factor for both decomposition rate (k) and stabilization factor (S) was the sand content of the soils. The data mining models achieved an accuracy of 54.0 and 66.7% for decomposition rates and stabilization factors, respectively. The data mining results enhance our knowledge about the driving forces of litter decomposition in urban soils, which are underrepresented in soil monitoring schemes. The models are very informative for understanding and describing litter decomposition in urban settings in general. This approach may also further encourage participatory researcher-teacher-student interactions and thus help create an enabling environment for cooperation for further citizen science research in urban school settings.

Funder

Bundesministerium für Bildung, Wissenschaft und Forschung

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3