Prediction of plant diversity under different stocking rates based on functional traits of constructive species in a desert steppe, northern China

Author:

Li Jiangwen,He Bangyin,Zhou Shuangxi,Zhang Xiaoxi,Li Cai,Han Guodong

Abstract

Excessive grazing causes a decrease in plant diversity of grassland and also leads to changes in the functional traits of grassland plants. Based on the relationship between plant diversity and the functional traits of constructive species, the patterns of change in plant diversity can be predicted based on change in plant functional traits under different stocking rates. For the present study, Stipa breviflora desert steppe in Inner Mongolia was studied to characterize the plant community and population characteristics and plant functional traits of S. breviflora in grazing areas with different stocking rates [without grazing, light grazing (LG, 0.93 sheep unit hm–2half yr–1), moderate grazing (MG, 1.82 sheep unit hm–2half yr–1), heavy grazing (HG, 2.71 sheep unit hm–2 half yr–1)]. The results showed that: (1) LG significantly weakened the competitive advantage of the constructive species (S. breviflora) (P < 0.05), while HG significantly strengthened its competitive advantage in the community (P < 0.05); (2) Changes in plant diversity were generally significantly related to changes in S. breviflora root traits. The competitive advantage of S. breviflora in the community and the change in root traits could be used to predict the change in plant diversity in the desert steppe under different stocking rates. This research can provide a theoretical basis for maintaining plant diversity and sustainability in the desert steppe.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3