Metabolite Profiling of the Social Spider Stegodyphus dumicola Along a Climate Gradient

Author:

Sandfeld Tobias,Malmos Kirsten Gade,Nielsen Camilla Bak,Lund Marie Braad,Aagaard Anne,Bechsgaard Jesper,Wurster Martina,Lalk Michael,Johannsen Mogens,Vosegaard Thomas,Bilde Trine,Schramm Andreas

Abstract

Animals experience climatic variation in their natural habitats, which may lead to variation in phenotypic responses among populations through local adaptation or phenotypic plasticity. In ectotherm arthropods, the expression of thermoprotective metabolites such as free amino acids, sugars, and polyols, in response to temperature stress, may facilitate temperature tolerance by regulating cellular homeostasis. If populations experience differences in temperatures, individuals may exhibit population-specific metabolite profiles through differential accumulation of metabolites that facilitate thermal tolerance. Such thermoprotective metabolites may originate from the animals themselves or from their associated microbiome, and hence microbial symbionts may contribute to shape the thermal niche of their host. The social spider Stegodyphus dumicola has extremely low genetic diversity, yet it occupies a relatively broad temperature range occurring across multiple climate zones in Southern Africa. We investigated whether the metabolome, including thermoprotective metabolites, differs between populations, and whether population genetic structure or the spider microbiome may explain potential differences. To address these questions, we assessed metabolite profiles, phylogenetic relationships, and microbiomes in three natural populations along a temperature gradient. The spider microbiomes in three genetically distinct populations of S. dumicola showed no significant population-specific pattern, and none of its dominating genera (Borrelia, Diplorickettsia, and Mycoplasma) are known to facilitate thermal tolerance in hosts. These results do not support a role of the microbiome in shaping the thermal niche of S. dumicola. Metabolite profiles of the three spider populations were significantly different. The variation was driven by multiple metabolites that can be linked to temperature stress (e.g., lactate, succinate, or xanthine) and thermal tolerance (e.g., polyols, trehalose, or glycerol): these metabolites had higher relative abundance in spiders from the hottest geographic region. These distinct metabolite profiles are consistent with a potential role of the metabolome in temperature response.

Funder

Novo Nordisk Fonden

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference71 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3