Adaptation responses of different ecotypes of Leymus chinensis to saline–alkaline stress

Author:

Li Ya-Xiao,Ma Hong-Yuan,Ni Hong-Wei,Li Shao-Yang,Xu Lu,Sun Meng-Dan,Qi Wen-Wen,Zhao Dan-Dan

Abstract

IntroductionSoil salinity–alkalinity has emerged as a global problem affecting many ecosystems, including grassland. Plants evolve into different ecotypes to adapt to various environments. Leymus chinensis widely distributed in the eastern Eurasian steppe, has evolved into two main ecotypes: yellow–green(YG) and gray–green (GG). Studies on the adaption mechanisms of both ecotypes in response to saline–alkaline stress are limited.MethodsIn this study, the growth and physiological traits of ecotypes YG and GG in soils with different salinity–alkalinity levels—severe saline–alkaline soil (SS), moderate saline–alkaline soil (MS), and light saline–alkaline soil (LS)—were studied. After exposure to saline–alkaline stress for 15 months, the L. chinensis ecotypes exhibited significant differences in the growth characteristics.ResultsThe specific leaf area, individual tiller biomass, net photosynthetic rate, and potassium content of the two ecotypes under MS conditions were significantly higher than or similar to those under LS conditions. This indicates that L. chinensis showed a certain degree of tolerance to saline–alkaline environments under MS conditions. Saline–alkaline stress increased the tillers by 56% in GG and reduced them by 26% in YG, and did not alter the SLA and the number of individual tiller leaves of GG but reduced that of YG. Moreover, with increasing levels of saline–alkaline stress, ecotype GG exhibited an increase in net photosynthetic rate (Pn), while ecotype YG showed insignificant changes. Under SS, GG exhibited higher Pn and chlorophyll content than YG. Additionally, with the increase in the saline–alkaline stress level, the Na+ content increased, but GG exhibited a significantly lower Na+ content than YG. Conversely, the K+ and Ca2+ contents and the K+/Na+ and Ca2+/Na+ ratios decreased, but GG exhibited higher values than YG.DiscussionGG reduced Na+ by absorption by increasing tillers. Additionally, GG absorbed more K+ and Ca2+ ions, thereby maintaining higher K+/Na+ and Ca2+/Na+ ratios than YG under saline–alkaline stress. These adaptive strategies enable ecotype GG to grow and maintain normal physiological functions under high saline–alkaline stress. The findings of this study hold practical significance for enhancing the economic and ecological value of saline–alkaline grasslands.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3