Ancient diversification in extreme environments: exploring the historical biogeography of the Antarctic winged midge Parochlus steinenii (Diptera: Chironomidae)

Author:

Maturana Claudia S.,Contador Mejias Tamara,Simões Felipe L.,Valladares Moisés A.,Vidal Paula M.,Gañán Melisa,González-Wevar Claudio A.,Poulin Elie,Sands Chester J.,Convey Peter

Abstract

The terrestrial fauna of Antarctica consists of a limited number of species, notably insects, small crustaceans and other micro-invertebrates. Over long periods of evolutionary isolation, these organisms have developed varying degrees of tolerance to multifaceted environmental stresses. Recent molecular biogeographical research highlights the enduring persistence of much of Antarctica’s current terrestrial fauna, with estimates spanning from hundreds of thousands to millions of years. Parochlus steinenii, commonly known as the Antarctic winged midge, stands out as one of the only two insect species native to Antarctica. Distributed across three biogeographic regions, southern South America and the Falkland/Malvinas Islands, sub-Antarctic South Georgia and the Maritime Antarctic South Shetland Islands, this midge raises questions about the temporal isolation of its populations and their divergence. Employing mitochondrial and nuclear genetic markers, we conducted phylogeographic and demographic analyses on 151 individuals of P. steinenii obtained across the three main biogeographic regions including the Magellanic sub-Antarctic Ecoregion (MSE) of southern South America, the sub-Antarctic Island of South Georgia (SG) and the South Shetland Islands (SSI) within the Maritime Antarctic (MA). Our data support the diversification of P. steinenii during the mid-Pleistocene around 1.46 Mya. This period included a branching event between a clade containing only specimens from the MSE and a clade containing individuals from a broader range of locations including the SSI and SG. Based on intraspecific phylogeographic and demographic inferences, we detected strong evolutionary divergence between the three main biogeographic regions. We also detected a signal of population growth during the deglaciation process in SSI and SG, contrary to the pattern seen in the MSE. The different demographic and phylogeographic histories between the sampled biogeographic regions could result from the MA and SG experiencing a strong genetic bottleneck due to a reduction in population size during the Last Glacial Maximum, while the MSE maintained a significant effective population size. The high level of divergence detected between individuals from the MSE and the remaining biogeographic regions supports the hypothesis of a speciation process taking place in P. steinenii.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3