Effect of Temperature on the Plasticity of Peripheral Hearing Sensitivity to Airborne Sound in the Male Red-Eared Slider Trachemys scripta elegans

Author:

Wang Tongliang,Li Handong,Chen Bo,Cui Jianguo,Shi Haitao,Wang Jichao

Abstract

Chelonians are considered the least vocally active group of extant reptiles and known as “low-frequency specialists” with a hearing range of <1.0 kHz. As they are ectothermic organisms, most of their physiological and metabolic processes are affected by temperature, which may include the auditory system responses. To investigate the influence of temperature on turtle hearing, Trachemys scripta elegans was chosen to measure the peripheral hearing sensitivity at 10, 20, 30, and 40°C (close to the upper limit of heat resistance) using the auditory brainstem response (ABR) test. An increase in temperature (from 10 to 30°C) resulted in improved hearing sensitivity (a wider hearing sensitivity bandwidth, lower threshold, and shorter latency) in T. scripta elegans. At 40°C, the hearing sensitivity bandwidth continued to increase and the latency further shortened, but the threshold sensitivity reduced in the intermediate frequency range (0.5–0.8 kHz), increased in the high-frequency range (1.0–1.3 kHz), and did not significantly change in the low-frequency range (0.2–0.4 kHz) compared to that at 30°C. Our results suggest that although the hearing range of turtles is confined to lower frequencies than that in other animal groups, turtle hearing showed exceptional thermal regulation ability, especially when the temperature was close to the upper limit of heat resistance. Temperature increases that are sensitive to high frequencies imply that the males turtles’ auditory system adapts to a high-frequency sound environment in the context of global warming. Our study is expected to spur further research on the high-temperature plasticity of hearing sensitivity in diverse taxa or in the same group with different temperature ranges. Moreover, it facilitates forecasting the adaptive evolution of the auditory system to global warming.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3