Should more individuals be sampled when measuring functional traits of tree species in habitat-heterogeneous karst forests?

Author:

Wang Chenling,Lu Xiaoling,Yang Tingting,Zheng Yawen,Chen Linhao,Liu Libin,Ni Jian

Abstract

When measuring plant functional traits across geomorphologies, 5–10 healthy individuals of a plant species are commonly sampled. However, whether more individuals should be sampled in habitat-heterogeneous karst vegetation remains unknown. In this study, two dominant tree species (Clausena dunniana and Platycarya strobilacea) in karst evergreen and broadleaved mixed forests in Southwestern China were selected. On the basis of a large quantity of individuals of the two species grown in different peak clumps and slope positions, variations of 10 morphological traits in the two species were statistically analyzed. The suggested sampling number of individuals, which could mostly represent the common trait characteristics, was further explored. All traits showed significant differences between the two species (p < 0.05). The traits of P. strobilacea displayed larger intraspecific variations than those of C. dunniana, except for twig dry matter content. The bark thickness (BT), leaf area (LA), and specific leaf area (SLA) of C. dunniana and the BT, SLA, LA, leaf tissue density, and bark tissue density of P. strobilacea presented large intraspecific variations. Most traits exhibited significant differences between peak clumps and/or among slope positions (p < 0.05). Random sampling analysis indicated that the suggested sampling numbers of individuals for the 10 traits are 6–23 in C. dunniana and 9–29 in P. strobilacea. The common accepted sample size in normal geomorphologies is not sufficiently large in most cases. Larger sample sizes are recommended for traits, such as SLA, BT, and LA, with larger intraspecific variations. Therefore, under sufficient labor, material, and time, more individuals should be sampled when measuring plant functional traits in habitat-heterogeneous karst vegetation.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3