Temporal Non-stationarity of Path-Selection Movement Models and Connectivity: An Example of African Elephants in Kruger National Park

Author:

Kaszta Żaneta,Cushman Samuel A.,Slotow Rob

Abstract

Effective conservation and land management require robust understanding of how landscape features spatially and temporally affect population distribution, abundance and connectivity. This is especially important for keystone species known to shape ecosystems, such as the African elephant (Loxodonta africana). This work investigates monthly patterns of elephant movement and connectivity in Kruger National Park (KNP; South Africa), and their temporal relationship with landscape features over a 12-month period associated with the occurrence of a severe drought. Based on elephant locations from GPS collars with a short acquisition interval, we explored the monthly patterns of spatial-autocorrelation of elephant movement using Mantel correlograms, and we developed scale-optimized monthly path-selection movement and resistant kernel connectivity models. Our results showed high variability in patterns of autocorrelation in elephant movements across individuals and months, with a preponderance of directional movement, which we believe is related to drought induced range shifts. We also found high non-stationarity of monthly movement and connectivity models; most models exhibited qualitative similarity in the general nature of the predicted ecological relationships, but large quantitative differences in predicted landscape resistance and connectivity across the year. This suggests high variation in space-utilization and temporal shifts of core habitat areas for elephants in KNP. Even during extreme drought, rainfall itself was not a strong driver of elephant movement; elephant movements, instead, were strongly driven by selection for green vegetation and areas near waterholes and small rivers. Our findings highlight a potentially serious problem in using movement models from a particular temporal snapshot to infer general landscape effects on movement. Conservation and management strategies focusing only on certain areas identified by temporarily idiosyncratic models might not be appropriate or efficient as a guide for allocating scarce resources for management or for understanding general ecological relationships.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3