The Limpopo–Mpumalanga–Eswatini Escarpment—Extra-Ordinary Endemic Plant Richness and Extinction Risk in a Summer Rainfall Montane Region of Southern Africa

Author:

Clark Vincent Ralph,Burrows John E.,Turpin Barbara C.,Balkwill Kevin,Lötter Mervyn,Siebert Stefan J.

Abstract

Climatic, edaphic, and topographic differences between mountains and surrounding lowlands result in mountains acting as terrestrial islands with high levels of endemic biota. Conservation of mountains is thus key to successful biodiversity conservation. The Limpopo–Mpumalanga–Eswatini Escarpment (LMEE) in South Africa and the Kingdom of Eswatini is one of the largest components of southern Africa’s Great Escarpment. Despite botanical collecting effort over 150 years, there has never been a holistic and comprehensive synthesis of plant endemics data for the LMEE. For the first time, we define the LMEE as an orographic entity, covering 53,594 km2; it forms a contiguous highland area from the Pongola River in the south, north to the Woodbush area, and includes rugged western Eswatini. Using exhaustive literature mining, coupled with combined decades of fieldwork by the authors, and up-to-date taxonomic assessments of the 46 undescribed species, we provide the first robust list of plant endemics for the LMEE. The LMEE has 496 endemic plant taxa, comprising 10.7% of the provisional flora (4,657 taxa). This is more than double the endemic plant taxa in the Drakensberg Mountain Centre (DCM), and may be the richest concentration of montane endemics in southern Africa outside of the Core Greater Cape Floristic Region. Grassland hosts the largest number of endemics (74.2%), followed by Savanna (26.6%), then Forest (7.7%). Most endemics of conservation concern occur in Grassland (68.4%), in which one is Extinct and two are Extinct in the Wild. Evolutionary partitioning between Grassland, Savanna and Forest is suggested by low introgression of Biomes at family and genus level, and by a dominance of life-forms adapted to open habitats. High threat statuses for Grassland endemics can be attributed to the historical transformation of almost 20% of Grassland to forestry pre-1990, and ongoing degradation of primary Grassland. With conservation area coverage only 11.1% of the LMEE, the exceptional richness of the endemic flora—combined with major conservation threats—suggest that the LMEE should become a major focus of conservation effort between South Africa and Eswatini as a matter of urgency.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference82 articles.

1. Area and endemism.;Anderson;Quart. Rev. Biol.,1994

2. Plantation forestry in South Africa and its impact on biodiversity.;Armstrong;Sout. African For. J.,1998

3. Diversity and conservation of serpentine sites in southern Mpumalanga (Eastern Transvaal), South Africa;Balkwill;The Ecology of Ultramafic and Metalliferous Areas. Documents Scientifiques et Techniques III,1997

4. Fire and herbivory shape belowground bud banks in a semi-arid African savanna.;Bombo;African J. Range Forage Sci.,2022

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3