Hydrometeorological controls on net carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China

Author:

Song Jiaxin,Zhou Li,Zhou Guangsheng,Wang Yu,Zhang Sen,Yan Yujie

Abstract

Understanding the effect of environmental factors on the net ecosystem CO2 exchange (NEE) and the response of NEE to rainfall events is of great significance for an accurate understanding of the carbon cycle for desert steppe ecosystems. Based on the long-term (2011–2018) eddy covariance flux data of a temperate desert steppe in Inner Mongolia, China, this study used path analysis to analyze the combined impact of the environmental factors on NEE. The results showed that during the growing season, vapor pressure deficit (VPD) and soil water content (SWC) was the most prominent environmental factor for the daytime NEE and nighttime NEE, respectively. NEE responds differently to individual environmental factors among multi-year climatic conditions. The size of rainfall event has significant impacts on NEE, it can effectively promote the CO2 uptake of the desert steppe ecosystem when rainfall event size is greater than 5 mm, and the NEE response increased with the rainfall event size. Moreover, NEE peaked approximately 1–3  days after a 5–10 mm rainfall event, while the rainfall event size >10 mm, it would take 3–5  days for NEE to reach a peak value; and yet, small rainfall events (< 5 mm) slightly increased CO2 emissions. During the growing season, carbon uptake increased with monthly rainfall, except in May. Our results are important for understanding the carbon cycle and its control mechanisms in the temperate desert steppe of Inner Mongolia.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3