Effects of different land use patterns on soil properties and N2O emissions on a semi-arid Loess Plateau of Central Gansu

Author:

Du Mengyin,Yuan Jianyu,Zhuo Macao,Sadiq Mahran,Wu Jiangqi,Xu Guorong,Liu Shuainan,Li Jie,Li Guang,Yan Lijuan

Abstract

Nitrous oxide (N2O) is one of the significant greenhouse gases in the atmosphere. Different land use patterns are the sink or source of N2O, which plays a vigorous role in controlling N2O emissions. Yet, how different land use patterns affect soil N2O emissions in the Loess Plateau of Central Gansu is still not clear. Therefore; in order to fill this gap, six different land use patterns, including Picea asperata (PA), Hippophae rhamnoides (HR), Medicago sativa (MS), No-tillage wheat field (NT) and Conventional tillage wheat field (T) were studied. The objective of this study was to examine the impact of different land use patterns on soil properties and N2O emission flux. Our results showed that compared with other treatments, Picea asperata woodland increased the soil bulk density, organic matter and soil water content, total nitrogen accumulation and microbial biomass nitrogen whilst reduced the soil pH. The wheat field is more favorable to accumulating soil nitrate nitrogen and ammonium nitrogen. Moreover, soil N2O emission rates followed the trend of T>NT>HR>GL>MS>PA. In addition, soil physicochemical properties were closely related to N2O emission flux and soil temperature was the most significant factor affecting N2O emission. General, Picea asperata woodland could significantly increased soil nutrient and reduce N2O emissions. We suggest that more forest land should be selected as the optimal site for nitrogen fixation and emission reduction for sustainable development of the terrestrial ecosystem on the Loess Plateau in Central Gansu.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3