Sheepfolds induce significant increase of seasonal CO2, CH4 and N2O emissions in temperate steppes of Inner Mongolia

Author:

Wang Xinyu,Guo Xudong,Zhou Di,Wang Hao,Li Haoxin,Li Frank Yonghong

Abstract

IntroductionThe changes in grassland management and grassland types are strongly linked with dynamics in soil physico-chemical properties and vegetation attributes, with important implications for carbon/nitrogen cycling and greenhouse gas (GHG) fluxes. However, the seasonal variations of GHG emissions from sheepfolds, and the underlying biotic and abiotic drivers affecting GHG exchanges across different steppe and management types remain largely unclear.MethodsTaking the Inner Mongolian grassland as a model system, we measured the fluxes of CO2, CH4 and N2O, as well as soil and vegetation variables, in three contrasting grassland management areas (grazing, sheepfold, enclosure) and in three representative (wet typical, dry typical, desert) grassland ecosystems in July, September and November 2016.ResultsOur results showed that: (1) GHG fluxes were mostly higher in the plant growing season (July and September) than in the nongrowing season (November); sheepfold area had significantly higher GHG emissions (in July and mean over the season) than enclosed and grazing areas, with the effects being most pronounced in dry typical steppe. (2) The high GHG emissions in dry typical steppe were closely associated with the interactions among favorable soil temperature and moisture, high total organic carbon (TOC) content, and high aboveground biomass. The important predictors for CO2 emission were soil TOC and pH, whereas that for CH4 and N2O emissions were soil temperature and moisture content, in sheepfold areas. (3) Three GHG emissions were negatively affected by species richness across all steppe and management types, which might be a consequence of indirect effects through the changes in soil TOC and total nitrogen (TN).DiscussionThese results indicate that sheepfold areas are intensive hotspot sources of GHGs in the steppes, and it is of great importance to help to account GHG emissions and develop mitigation strategies for sheepfold areas for sustainable grassland management in the natural steppe based pastoral production ecosystems.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3