Diversity and specificity of orchid mycorrhizal fungi in a leafless epiphytic orchid, Dendrophylax lindenii and the potential role of fungi in shaping its fine-scale distribution

Author:

Johnson Lynnaun J. A. N.,Kane Michael E.,Zettler Lawrence W.,Mueller Gregory M.

Abstract

Orchids grow in diverse habitats worldwide with most (approximately 69%) growing on trees as epiphytes. Although orchid mycorrhizal fungi have been identified as potential drivers for terrestrial orchid distribution, the influence of these fungi on the fine-scale distribution of epiphytic orchids is poorly understood. In this study, we investigated the mycorrhizal fungal community and fine-scale distribution of Dendrophylax lindenii, a rare and endangered epiphytic orchid that is leafless when mature. We used amplicon sequencing to investigate the composition of orchid mycorrhizal fungi in the roots of 39 D. lindenii individuals in their natural habitat, the swamps of Florida. We compared the orchid mycorrhizal fungi of D. lindenii to those of co-occurring epiphytic orchids, as well as to the orchid mycorrhizal fungal communities of bark from potential host trees, with and without D. lindenii. Our results show that D. lindenii has a high specificity for a single Ceratobasidium species, which is widely distributed on phorophytes and detected in both wet and dry periods in the orchid’s habitat. This Ceratobasidium species was mostly absent or only recorded in low frequency in the roots of co-occurring epiphytic orchids. Phylogenetic analysis documented that this Ceratobasidium was conspecific with the strain that is used to germinate D. lindenii ex-situ. However, our findings suggest that laboratory germinated adult D. lindenii transplanted into the field had lower read abundances of this Ceratobasidium compared to naturally occurring plants. These findings suggest that this orchid mycorrhizal fungus may play a significant role in the fine-scale distribution of naturally occurring D. lindenii.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3