Mapping spatial and temporal distribution information of plantations in Guangxi from 2000 to 2020

Author:

Zhou Quan,Wang Li,Tang Feng,Zhao Siyan,Huang Ni,Zheng Kaiyuan

Abstract

Plantations are formed entirely by artificial planting which are different from natural forests. The rapid expansion of plantation forestry has brought about a series of ecological and environmental problems. Timely and accurate information on the distribution of plantation resources and continuous monitoring of the dynamic changes in plantations are of great significance. However, plantations have similar spectral and texture characteristics with natural forests. In addition, cloud and rain greatly affected the image quality of large area mapping. Here, we tested the possibility of applying Continuous Change Detection and Classification to distinguish plantations from natural forests and described the spatiotemporal dynamic changes of plantations. We adopted the Continuous Change Detection and Classification algorithm and used all available Landsat images from 2000 to 2020 to map annual plantation forest distribution in Guangxi Zhuang Autonomous Region, China and analyzed their spatial and temporal dynamic changes. The overall accuracy of the plantation extraction is 88.77%. Plantations in Guangxi increased significantly in the past 20 years, from 2.37 × 106 ha to 5.11 × 106 ha. Guangxi is expanding new plantation land every year, with the largest expansion area in 2009 of about 2.58 × 105 ha. Over the past 20 years, plantations in Guangxi have clearly shown a tendency to expand from the southeast to the northwest, transformed from natural forests and farmland. 30% of plantations have experienced at least one logging-and-replanting rotation event. Logging rotation events more intensively occur in areas with dense plantation forests. Our study proves that using fitting coefficients from Continuous Change Detection and Classification algorithm is effective to extract plantations and mitigating the adverse effects of clouds and rain on optical images in a large scale, which provides a fast and effective method for long-time and large-area plantation identification and spatiotemporal distribution information extraction, and strong data support and decision reference for plantation investigation, monitoring and management.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3