Understanding and Modeling Forest Disturbance Interactions at the Landscape Level

Author:

Sturtevant Brian R.,Fortin Marie-Josée

Abstract

Disturbances, both natural and anthropogenic, affect the configuration, composition, and function of forested ecosystems. Complex system behaviors emerge from the interactions between disturbance regimes, the vegetation response to those disturbances, and their interplay with multiple drivers (climate, topography, land use, etc.) across spatial and temporal scales. Here, we summarize conceptual advances and empirical approaches to disturbance interaction investigation, and used those insights to evaluate and categorize 146 landscape modeling studies emerging from a systematic review of the literature published since 2010. Recent conceptual advances include formal disaggregation of disturbances into their constituent components, embedding disturbance processes into system dynamics, and clarifying terminology for interaction factors, types, and ecosystem responses. Empirical studies investigating disturbance interactions now span a wide range of approaches, including (most recently) advanced statistical methods applied to an expanding set of spatial and temporal datasets. Concurrent development in spatially-explicit landscape models, informed by these empirical insights, integrate the interactions among natural and anthropogenic disturbances by coupling these processes to account for disturbance stochasticity, disturbance within and across scales, and non-linear landscape responses to climate change. Still, trade-offs between model elegance and complexity remain. We developed an index for the degree of process integration (i.e., balance of static vs. dynamic components) within a given disturbance agent and applied it to the studies from our systematic review. Contemporary model applications in this line of research have applied a wide range process integration, depending on the specific question, but also limited in part by data and knowledge. Non-linear “threshold” behavior and cross-scaled interactions remain a frontier in temperate, boreal, and alpine regions of North America and Europe, while even simplistic studies are lacking from other regions of the globe (e.g., subtropical and tropical biomes). Understanding and planning for uncertainty in system behavior—including disturbance interactions—is paramount at a time of accelerated anthropogenic change. While progress in landscape modeling studies in this area is evident, work remains to increase model transparency and confidence, especially for understudied regions and processes. Moving forward, a multi-dimensional approach is recommended to address the uncertainties of complex human-ecological dynamics.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3