Sea Turtle Epibiosis: Global Patterns and Knowledge Gaps

Author:

Robinson Nathan J.,Pfaller Joseph B.

Abstract

Competition for space drives many marine propagules to colonize the external surfaces of other marine organisms, a phenomenon known as epibiosis. Epibiosis appears to be a universal phenomenon among sea turtles and an extensive body of scientific literature exists describing sea turtle-epibiont interactions. When viewed in isolation, however, these epibiont “species lists” provide limited insights into the factors driving patterns in taxonomic diversity on a global scale. We conducted an exhaustive literature review to collate information on sea turtle-epibiont interactions into a global database. As studies involving meio- and micro-epibionts, as well as plants, are limited, we exclusively focused on animal, macro-epibionts (>1 mm). We identified 304 studies that included a combined total of 1,717 sea turtle-epibiont interactions involving 374 unique epibiont taxa from 23 Higher Taxon categories (full Phylum or select phyla differentiated by Subphylum/Class/Subclass). We found that loggerhead turtles hosted the highest taxonomic richness (262 epibiont taxa) and diversity, including representative taxa from 21 Higher Taxon categories, followed by hawksbill, green, olive ridley, leatherback, Kemp’s ridley, and flatback turtles. In addition, the taxonomic richness for all turtle species except leatherbacks was projected to increase with additional studies. We found that taxonomic richness not only varies between species but also between well-studied populations of loggerhead turtles. Lastly, we assessed biases in the current literature and identified knowledge gaps for certain species (e.g., Kemp’s ridleys and flatbacks), life stages (e.g., juveniles), habitats (e.g., oceanic habitats), and geographic regions (e.g., central Pacific, east Atlantic, and east Indian oceans). Our hope is that this database will serve as a foundational platform for future studies investigating global patterns of the diversity, ecological function, and evolutionary origins of sea turtle epibiosis.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3