Nitrogen enrichment alters the resistance of a noninvasive alien plant species to Alternanthera philoxeroides invasion

Author:

Wu Hao,Dong Sijin,Wang Li,Zhu Yuanyuan,Jia Shaoqi,Rao Benqiang

Abstract

Soil nitrogen can significantly affect the morphology, biomass, nutrient allocation, and photosynthesis of alien vs. native plants, thereby changing their coexistence patterns; however, the effect of soil nitrogen on the interspecific relationship between alien plants is currently unclear. We conducted a nitrogen addition experiment in a greenhouse to explore the effect of soil nitrogen on the interspecific relationship between invasive alien weed Alternanthera philoxeroides and the noninvasive alien horticultural plant Oxalis articulata. We set three experimental factors—nitrogen treatment, planting type, and species and measured the morphology, biomass, carbon (C) and nitrogen (N) content, physiological traits, and photosynthetic fluorescence of the studied plant species. We then used multi-way ANOVA and multiple comparisons to examine the differences in the above indicators among treatment combinations. We found that, in mixed cultures, nitrogen addition significantly increased the root area of O. articulata by 128.489% but decreased the root length by 56.974% compared with the control, while it significantly increased the root length of A. philoxeroides by 130.026%. Nitrogen addition did not affect the biomass accumulation of these two plant species; however, the biomass and root/shoot ratio of O. articulata were significant higher than those of A. philoxeroides. Nitrogen addition significantly increased the N content of A. philoxeroides by 278.767% and decreased the C:N ratio by 66.110% in mixed cultures. Nitrogen addition caused a significant trade-off between flavonoid and anthocyanin in O. articulata, and decreased the initial fluorescence (F0) and maximal fluorescence (Fm) of A. philoxeroides by 18.649 and 23.507%, respectively, in mixed cultures. These results indicate that nitrogen addition increased the N absorption and assimilation ability of A. philoxeroides in deep soil; furthermore, it significantly enhanced the advantages for O. articulata in terms of morphology, physiological plasticity, and photosynthetic efficiency. In addition, O. articulata had better individual and underground competitive advantages. Under intensified nitrogen deposition, the biotic replacement effect of O. articulata on A. philoxeroides in natural ecosystems could be further enhanced.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3