Data-integration of opportunistic species observations into hierarchical modeling frameworks improves spatial predictions for urban red squirrels

Author:

Grabow Marius,Louvrier Julie L. P.,Planillo Aimara,Kiefer Sarah,Drenske Sinah,Börner Konstantin,Stillfried Milena,Hagen Robert,Kimmig Sophia,Straka Tanja M.,Kramer-Schadt Stephanie

Abstract

The prevailing trend of increasing urbanization and habitat fragmentation makes knowledge of species’ habitat requirements and distribution a crucial factor in conservation and urban planning. Species distribution models (SDMs) offer powerful toolboxes for discriminating the underlying environmental factors driving habitat suitability. Nevertheless, challenges in SDMs emerge if multiple data sets - often sampled with different intention and therefore sampling scheme – can complement each other and increase predictive accuracy. Here, we investigate the potential of using recent data integration techniques to model potential habitat and movement corridors for Eurasian red squirrels (Sciurus vulgaris), in an urban area. We constructed hierarchical models integrating data sets of different quality stemming from unstructured on one side and semi-structured wildlife observation campaigns on the other side in a combined likelihood approach and compared the results to modeling techniques based on only one data source - wherein all models were fit with the same selection of environmental variables. Our study highlights the increasing importance of considering multiple data sets for SDMs to enhance their predictive performance. We finally used Circuitscape (version 4.0.5) on the most robust SDM to delineate suitable movement corridors for red squirrels as a basis for planning road mortality mitigation measures. Our results indicate that even though red squirrels are common, urban habitats are rather small and partially lack connectivity along natural connectivity corridors in Berlin. Thus, additional fragmentation could bring the species closer to its limit to persist in urban environments, where our results can act as a template for conservation and management implications.

Funder

Deutsche Forschungsgemeinschaft

Deutscher Akademischer Austauschdienst

Bundesministerium für Bildung und Forschung

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3