Soil Moisture but Not Warming Dominates Nitrous Oxide Emissions During Freeze–Thaw Cycles in a Qinghai–Tibetan Plateau Alpine Meadow With Discontinuous Permafrost

Author:

Chen Zhe,Ge Shidong,Zhang Zhenhua,Du Yangong,Yao Buqing,Xie Huichun,Liu Pan,Zhang Yufang,Wang Wenying,Zhou Huakun

Abstract

Large quantities of organic matter are stored in frozen soils (permafrost) within the Qinghai–Tibetan Plateau (QTP). The most of QTP regions in particular have experienced significant warming and wetting over the past 50 years, and this warming trend is projected to intensify in the future. Such climate change will likely alter the soil freeze–thaw pattern in permafrost active layer and toward significant greenhouse gas nitrous oxide (N2O) release. However, the interaction effect of warming and altered soil moisture on N2O emission during freezing and thawing is unclear. Here, we used simulation experiments to test how changes in N2O flux relate to different thawing temperatures (T5–5°C, T10–10°C, and T20–20°C) and soil volumetric water contents (VWCs, W15–15%, W30–30%, and W45–45%) under 165 F–T cycles in topsoil (0–20 cm) of an alpine meadow with discontinuous permafrost in the QTP. First, in contrast to the prevailing view, soil moisture but not thawing temperature dominated the large N2O pulses during F–T events. The maximum emissions, 1,123.16–5,849.54 μg m–2 h–1, appeared in the range of soil VWC from 17% to 38%. However, the mean N2O fluxes had no significant difference between different thawing temperatures when soil was dry or waterlogged. Second, in medium soil moisture, low thawing temperature is more able to promote soil N2O emission than high temperature. For example, the peak value (5,849.54 μg m–2 h–1) and cumulative emissions (366.6 mg m–2) of W30T5 treatment were five times and two to four times higher than W30T10 and W30T20, respectively. Third, during long-term freeze–thaw cycles, the patterns of cumulative N2O emissions were related to soil moisture. treatments; on the contrary, the cumulative emissions of W45 treatments slowly increased until more than 80 cycles. Finally, long-term freeze–thaw cycles could improve nitrogen availability, prolong N2O release time, and increase N2O cumulative emission in permafrost active layer. Particularly, the high emission was concentrated in the first 27 and 48 cycles in W15 and W30, respectively. Overall, our study highlighted that large emissions of N2O in F–T events tend to occur in medium moisture soil at lower thawing temperature; the increased number of F–T cycles may enhance N2O emission and nitrogen mineralization in permafrost active layer.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3