Vegetation responses to large dam removal on the Elwha River, Washington, USA

Author:

Shafroth Patrick B.,Perry Laura G.,Helfield James M.,Chenoweth Joshua,Brown Rebecca L.

Abstract

Large dam removal can trigger changes to physical and biological processes that influence vegetation dynamics in former reservoirs, along river corridors downstream of former dams, and at a river’s terminus in deltas and estuaries. We present the first comprehensive review of vegetation response to major fluvial disturbance caused by the world’s largest dam removal. After being in place for nearly a century, two large dams were removed along the Elwha River, Washington, USA, between 2011 and 2014. The exposure, erosion, transport, and deposition of large volumes of sediment and large wood that were impounded behind the dams created new fluvial surfaces where plant colonization and growth have occurred. In the former reservoirs, dam removal exposed ~290 ha of unvegetated sediment distributed on three main landforms: valley walls, high terraces, and dynamic floodplains. In addition to natural revegetation in the former reservoirs, weed control and seeding and planting of desirable plants influenced vegetation trajectories. In early years following dam removal, ~20.5 Mt of trapped sediment were eroded from the former reservoirs and transported downstream. This sediment pulse, in combination with transport of large wood, led to channel widening, an increase in gravel bars, and floodplain deposition. The primary vegetation responses along the river corridor were a reduction in vegetated area associated with channel widening, plant establishment on new gravel bars, increased hydrochory, and altered plant community composition on gravel bars and floodplains. Plant species diversity increased in some river segments. In the delta, sediment deposition led to the creation of ~26.8 ha of new land surfaces and altered the distribution and dynamics of intertidal water bodies. Vegetation colonized ~16.4 ha of new surfaces: mixed pioneer vegetation colonized supratidal beach, river bars, and river mouth bars, and emergent marsh vegetation colonized intertidal aquatic habitats. In addition to the sediment-dominated processes that have created opportunities for plant colonization and growth, biological processes such as restored hydrochory and anadromous fish passage with associated delivery of marine-derived nutrients may influence vegetation dynamics over time. Rapid changes to landforms and vegetation growth were related to the large sediment pulse in the early years following dam removal, and the rate of change is expected to attenuate as the system adjusts to natural flow and sediment regimes.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3