An automated work-flow for pinniped surveys: A new tool for monitoring population dynamics

Author:

Infantes Eduardo,Carroll Daire,Silva Willian T. A. F.,Härkönen Tero,Edwards Scott V.,Harding Karin C.

Abstract

Detecting changes in population trends depends on the accuracy of estimated mean population growth rates and thus the quality of input data. However, monitoring wildlife populations poses economic and logistic challenges especially in complex and remote habitats. Declines in wildlife populations can remain undetected for years unless effective monitoring techniques are developed, guiding appropriate management actions. We developed an automated survey workflow using unmanned aerial vehicles (drones) to quantify the number and size of individual animals, using the well-studied Scandinavian harbour seal (Phoca vitulina) as a model species. We compared ground-based counts using telescopes with manual flights, using a zoom photo/video, and pre-programmed flights producing orthomosaic photo maps. We used machine learning to identify and count both pups and older seals and we present a new method for measuring body size automatically. We evaluate the population’s reproductive success using drone data, historical counts and predictions from a Leslie matrix population model. The most accurate and time-efficient results were achieved by performing pre-programmed flights where individual seals are identified by machine learning and their body sizes are measured automatically. The accuracy of the machine learning detector was 95–97% and the classification error was 4.6 ± 2.9 for pups and 3.1 ± 2.1 for older seals during good light conditions. There was a clear distinction between the body sizes of pups and older seals during breeding time. We estimated 320 pups in the breeding season 2021 with the drone, which is well beyond the expected number, based on historical data on pup production. The new high quality data from the drone survey confirms earlier indications of a deteriorating reproductive rate in this important harbour seal colony. We show that aerial drones and machine learning are powerful tools for monitoring wildlife in inaccessible areas which can be used to assess annual recruitment and seasonal variations in body condition.

Funder

Svenska Forskningsrådet Formas

Naturvårdsverket

Carl Tryggers Stiftelse för Vetenskaplig Forskning

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3