DNA Metabarcoding Enables High-Throughput Detection of Spotted Wing Drosophila (Drosophila suzukii) Within Unsorted Trap Catches

Author:

Piper Alexander M.,Cunningham John Paul,Cogan Noel O. I.,Blacket Mark J.

Abstract

The spotted wing drosophila (Drosophila suzukii, Matsumara) is a rapidly spreading global pest of soft and stone fruit production. Due to the similarity of many of its life stages to other cosmopolitan drosophilids, surveillance for this pest is currently bottlenecked by the laborious sorting and morphological identification of large mixed trap catches. DNA metabarcoding presents an alternative high-throughput sequencing (HTS) approach for multi-species identification, which may lend itself ideally to rapid and scalable diagnostics of D. suzukii within unsorted trap samples. In this study, we compared the qualitative (identification accuracy) and quantitative (bias toward each species) performance of four metabarcoding primer pairs on D. suzukii and its close relatives. We then determined the sensitivity of a non-destructive metabarcoding assay (i.e., which retains intact specimens) by spiking whole specimens of target species into mock communities of increasing specimen number, as well as 29 field-sampled communities from a cherry and a stone fruit orchard. Metabarcoding successfully detected D. suzukii and its close relatives Drosophila subpulchrella and Drosophila biarmipes in the spiked communities with an accuracy of 96, 100, and 100% respectively, and identified a further 57 non-target arthropods collected as bycatch by D. suzukii surveillance methods in a field scenario. While the non-destructive DNA extraction retained intact voucher specimens, dropouts of single species and entire technical replicates suggests that these protocols behave more similarly to environmental DNA than homogenized tissue metabarcoding and may require increased technical replication to reliably detect low-abundance taxa. Adoption of high-throughput metabarcoding assays for screening bulk trap samples could enable a substantial increase in the geographic scale and intensity of D. suzukii surveillance, and thus likelihood of detecting a new introduction. Trap designs and surveillance protocols will, however, need to be optimized to adequately preserve specimen DNA for molecular identification.

Funder

Hort Innovation

Agriculture Victoria

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3